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ABSTRACT

Detecting residual consciousness in unresponsive patients is a major clinical concern and a challenge for
theoretical neuroscience. To tackle this issue, we recently designed a paradigm that dissociates two
electro-encephalographic (EEG) responses to auditory novelty. Whereas a local change in pitch automatically
elicits a mismatch negativity (MMN), a change in global sound sequence leads to a late P300b response. The
latter component is thought to be present only when subjects consciously perceive the global novelty. Unfor-
tunately, it can be difficult to detect because individual variability is high, especially in clinical recordings.
Here, we show that multivariate pattern classifiers can extract subject-specific EEG patterns and predict
single-trial local or global novelty responses. We first validate our method with 38 high-density EEG, MEG
and intracranial EEG recordings. We empirically demonstrate that our approach circumvents the issues asso-
ciated with multiple comparisons and individual variability while improving the statistics. Moreover, we con-
firm in control subjects that local responses are robust to distraction whereas global responses depend on
attention. We then investigate 104 vegetative state (VS), minimally conscious state (MCS) and conscious
state (CS) patients recorded with high-density EEG. For the local response, the proportion of significant
decoding scores (M = 60%) does not vary with the state of consciousness. By contrast, for the global re-
sponse, only 14% of the VS patients' EEG recordings presented a significant effect, compared to 31% in MCS
patients' and 52% in CS patients'. In conclusion, single-trial multivariate decoding of novelty responses pro-
vides valuable information in non-communicating patients and paves the way towards real-time monitoring
of the state of consciousness.

© 2013 Elsevier Inc. All rights reserved.

Introduction

to reflect global information integration (Dehaene and Changeux,
2011; Dehaene and Naccache, 2001; Fisch et al., 2009; Lamme, 2006;

Despite a recent flurry of experimental discoveries, the neuronal
mechanisms that support conscious perception remain a major chal-
lenge for neuroscience. Numerous studies have associated conscious
perception with macroscopic neurophysiological phenomena such as
synchronous activity across distant cortical regions and sustained
fronto-parietal activations (Fahrenfort et al., 2007, 2012; Gaillard et
al., 2009; Melloni et al.,, 2007; Sergent et al., 2005) which are thought
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Melloni et al., 2011; Rees et al.,, 2002; Seth et al,, 2011; Tononi and
Edelman, 1998; Tononi and Sporns, 2003). However, identifying the
neuronal signatures of conscious processing is not just a theoretical ex-
ercise. Every year, severe brain injuries lead thousands of patients to
lose their communication abilities and fall into a variety of clinical
conditions ranging from coma, to vegetative state (VS), minimally con-
scious state (MCS) or conscious but paralyzed patients (locked-in syn-
drome). Clinically, separating disorders of consciousness (DOC) from
communication deficits can be difficult. In particular, VS (also known
as “unresponsive wakefulness syndrome”, Laureys et al. 2010) present
moments of arousal, during which they open their eyes and produce
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complex behavioral reflexes. Yet, they show no clear signs of intentional
behavior, even after careful clinical examination performed by experi-
enced teams (Bruno et al., 2011a). “Minimally conscious state” (MCS)
patients, present some intentional behaviors but seem unable to estab-
lish any long-lasting functional communication (Giacino et al., 2002).

To facilitate clinical diagnosis, brain imaging techniques may play an
important role (Laureys and Schiff, 2011; Laureys et al., 2004; Monti et
al., 2010; Owen, 2008; Owen et al., 2006). By directly detecting the neu-
ral activity associated with conscious processing, they could be used to
circumvent communication deficits and thus provide crucial
information for the diagnosis of these patients. The Local-Global
paradigm (Bekinschtein et al., 2009) was designed for this purpose
(Fig. 1). This experimental setup allows the isolation of two event relat-
ed potentials (ERPs) elicited by two types of auditory novelty. First, a
change in pitch within a five-sound sequence (hereafter referred to
as local deviancy) typically leads to a frontal mismatch negativity
(MMN) ~150 ms after stimulus onset. Second, a change in auditory se-
quence in a fixed global context generates a late P300b response over
centro-posterior electrodes. Crucially, these auditory changes can be
arranged to create a 2 x 2 design in which local deviancy and global
deviancy are orthogonally manipulated (Bekinschtein et al., 2009).

There is now growing evidence that the MMN reflects a prediction
error signal elicited whenever the incoming sound does not fit with a
prediction constructed on the basis of previous local auditory regular-
ities (Garrido et al, 2007, 2008; Nddtinen et al, 1978, 2010;
Wacongne et al., 2011, 2012; Winkler, 2007). Moreover, manipula-
tions of attention, sleep and anesthesia show that the MMN may per-
sist even in unconscious states (Atienza and Cantero, 1997;
Bekinschtein et al., 2009; Brazdil et al., 2001; Garrido et al., 2008;
Heinke et al., 2004; Muller-Gass et al., 2007; N&dtdnen et al., 2010;
Rohaut et al., 2009; Tzovara et al., 2013). By contrast, the P300b is
thought to reflect a higher-order violation of subjects’ expectations
of a given rule, constructed over a longer time period and has thus
been closely linked to working memory (Goldstein et al., 2002;
Polich, 2007) and conscious access (Dehaene and Changeux, 2011;
Dehaene et al., 2006). Converging lines of evidence suggest that the
dissociation between these two neural signatures could discriminate
patients in vegetative state (VS) from those in conscious (CS) or min-
imally conscious states (MCS) (Faugeras et al., 2011, 2012; Fischer
et al.,, 2010; Naccache et al., 2005; Rohaut et al., 2009; Wijnen et al.,
2007).

However, isolating these event-related responses in single patients
can unfortunately be difficult for several reasons. First, clinical recordings
often present a low signal-to-noise ratio (SNR) because of numerous
physiological (movements, eye blinks...) and environmental artifacts
(presence of auditory noise, no Faraday cage...). Moreover, patients
often present severe brain and even skull damages which can alter the
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Fig. 1. The Local-Global paradigm. The Local-Global paradigm (Bekinschtein et al.,
2009) is an auditory odd-ball experimental setup that implicitly tests subjects on
their ability to detect two orthogonal types of auditory novelty. Each trial is composed
of five successive tones (SOA = 150 ms). The first four sounds are always identical.
Local-deviant (LD) trials differ from local-standard trials (LS) because their fifth
sound deviates in pitch. Global-deviant (GD) trials correspond to the presentation of
a sequence of five sounds which is rare in a given block, compared to the frequent
“global standard” sequence (GS). Both local and global novelties depend entirely on
the fifth sound, which therefore serves as the origin of time scales in all subsequent
graphs.

scalp electrical projections of their cortical activity. This topographical
variability can be made worse by temporal delays and inter-trial vari-
ability caused by processing impairments or white matter damage
(Newcombe et al., 2010; Tshibanda et al., 2009). In other words, unlike
control recordings, a patient's MMN and P300b may not be optimally
observed over the frontal and parietal channels at ~150 and ~350 ms
respectively. While more liberal analyses testing a greater number of
EEG channels and time samples could be implemented, correction for
multiple comparisons would largely diminish either sensitivity or con-
fidence in the presence of a given brain response.

To overcome these common electrophysiological issues, we evaluate
in the present research the potential of a single-trial multivariate pat-
tern (MVP) analysis. We implemented, separately for each subject, a
MVP classifier that aims at maximally extracting information from
each trial by combining evidence from multiple EEG channels and mul-
tiple time-samples. After training on an independent dataset, the classi-
fier estimates the probability that each trial contains a local or a global
response to auditory novelty. This prediction can be compared to trials’'
effective classes. Classification scores can thus indicate whether a given
subject is able to detect the corresponding type of novelty.

To optimize the detection of single-trial local and global novelty re-
sponses, the present research followed a strict logic. First, to optimize
our methods, we tested them with EEG, MEG and intracranial EEG re-
cordings acquired from control subjects. Second, we then applied it to
158 high-density EEG recordings from 104 distinct patients whose
state of consciousness (VS, MCS, or CS) was assessed immediately prior
the experiment. We consider three successive questions: (1) What
level of accuracy can be achieved from each type of recordings and
does our method present genuine improvements as compared to tradi-
tional analyses? (2) Can decoders be formed to generalize the detection
of novelty from one experimental context to another? (3) Is our method
sensitive enough to be applied to the detection of residual novelty
processing in non- or poorly communicating patients?

Methods
Procedure, material & apparatus

The data analyzed here come from four different experimental set-
tings, using either scalp EEG, MEG, or intracranial EEG, which together
enables the direct comparison of the utility of each approach with re-
gard to single trial decoding. Events Related Potentials (ERPs) and
Events Related Fields (ERFs) have been partially reported elsewhere
(Bekinschtein et al., 2009; Faugeras et al, 2012; Wacongne et al,,
2011). All experiments were approved by the relevant regional ethical
committees (Comité pour la Protection des Personnes Pitié-Salpétriére
and Bicétre hospitals). Healthy volunteers received a financial compen-
sation for their participation. Unless specified otherwise, the procedure
used in our experiments exactly followed the Local-Global paradigm
(Bekinschtein et al., 2009) which enables the comparison of effects en-
gendered by physically identical but contextually different auditory
stimuli. In the standard Local-Global design, subjects are asked to
count the global deviant trials and report this number at the end of
each block, in order to ensure that they pay attention to the task.

The auditory stimuli were 50 ms-duration sounds composed of 3
sinusoidal tones (either 350, 700, and 1400 Hz, hereafter sound A;
or 500 Hz, 1000 Hz, and 2000 Hz, hereafter sound B), with 7-ms
rise and 7-ms fall times. Sequences were composed of five stimuli
presented at a Stimulus Onset Asynchrony (SOA) of 150 ms, and
were separated by a variable silent interval of 1350 to 1650 ms
(50 ms steps). The sequences could comprise five identical tones
(xxxxx) or four identical tones followed by a distinct one (xxxxY,
where X can be sound A or sound B and Y the other sound). Following
the original design, in a given block, 80% of trials consisted in one type
of sequence (e.g. aaaaB) and 20% of trials were global deviants (aaaaa
in this example), pseudo randomly distributed at least one and at
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most six global-standard trials apart (Fig. 1). In all experiments, trials
immediately following a global deviant were removed from the anal-
yses. Each block started with a 30 s habituation phase during which
the frequent sound sequences were repeatedly presented to establish
the global regularity, before the first infrequent stimulus was heard.
In Experiments 1, 3-5, sounds were presented via headphones with
an intensity of 70 dB, using E-prime v1.2 (Psychology Software
Tools Inc.). Trials from the habituation phase were not included in
the analyses. In Experiment 2, sounds were directly presented from
the computer's speakers because the intracranial recording apparatus
was incompatible with headphones.

Experiment 1: Counting task (EEG)

In the first experiment ( partially reported in (Faugeras et al., 2012)),
ten healthy adults (Age: M = 23.0 years old, SD = 0.67 years, 3 fe-
males) performed the standard Local-Global paradigm, while EEG
was continuously recorded using a 256-channel EEG geodesic net
(EGI) sampled at 250 Hz.

Each subject was recorded for approximately 45 min, comprising
8 blocks of 3-4 min duration. Each block was interleaved with resting
periods of a few minutes. In each block, subjects were instructed to
mentally count the global deviant trials. This experiment will there-
fore be referred to as ‘counting EEG'.

Bad sensors, defined as those showing no signal at all, constant
white noise, or presenting intermittent signals, were interpolated. Trials
during which more than 20% of the sensors were bad, the EEG voltages
exceeded 4150 1V, EEG transients exceeded 4100 UV or electro-
oculogram activity exceeded + 80 pV were excluded from the analyses.
All signals were digitally low-pass filtered at 40 Hz, and referenced with
a common average. Trials were then segmented from —800 ms to
736 ms after the onset of the fifth sound, and were baseline corrected
over a 200 ms window before the onset of the first of the five sounds.
All EEG processing stages were performed in the EGI Waveform Tools
Package and with the Fieldtrip toolbox (Oostenveld et al., 2011) and
MATLAB 2009b.

Experiment 2: Counting task (iEEG)

In the second experiment, nine patients (Age: M = 33 years old,
SD = 11 years, 5 women) suffering from drug-resistant epilepsy,
and who had consequently undergone electrode implantation for
pre-surgical purposes, performed a standard Local-Global paradigm
(two patients were already reported in (Bekinschtein et al., 2009))
in 8 consecutive blocks. It should be noted that, although epileptic pa-
tients cannot be considered as healthy controls, their attention and
their state of consciousness were relatively comparable to those of
healthy subjects. Therefore, their intracranial EEG recordings may
shed additional light on the EEG and MEG responses observed in
healthy subjects. On average, patients had 56 intracranial electrodes
(IEEG) sampled at 400 Hz or 1024 Hz (depending on the system)
placed in various cortical areas including the temporal, the occipital,
and the frontal lobes. Electrode locations are reported in Supplemen-
tary Fig. 2. The task was identical to Experiment 1s.

After removing channels showing inter-ictal activity, analyses were
performed by pooling over the 401 channels recorded across all subjects.
All signals were digitally low-pass filtered at 40 Hz and down-sampled
to 256 Hz. Trials were then segmented from — 800 ms to 700 ms after
the critical stimulus onset, and were corrected for baseline over a
200 ms window before the onset of the first of the five sounds. All EEG
processing stages were performed with MATLAB 2009b and the Fieldtrip
toolbox (Oostenveld et al,, 2011).

Experiment 3: Attentive task (MEG)

In the third experiment (partially reported in Wacongne et al.,
2011), ten healthy adults (Age: M = 25 years old, SD = 4.7 years, 5
females) performed a modified version of the Local-Global paradigm
(see below) while their brain activity was measured with MEG (Elekta

Neuromag® MEG system, Helsinki, Finland, comprising 204 planar gra-
diometers and 102 magnetometers in a helmet-shaped array) and EEG
(built-in 64 electrodes system). Scalp EEG electrodes were not analyzed
in the present study. Data were sampled at 1 KHz with on-line analog
low-pass filtering at 330 Hz, and on-line analog high-pass filtering at
0.1 Hz. The head position with respect to the sensor array was deter-
mined by four head position indicator coils attached to the scalp. The lo-
cations of the coils and EEG electrode positions were digitized with
respect to three anatomical landmarks (nasion and preauricular points)
with a 3D digitizer (Polhemus Isotrak system®). Then, head position
with respect to the device origin was acquired before each block of
MEG/EEG recording.

Each recording session lasted 1 h, comprising 14 blocks of 3-4 min
duration with resting periods between each block. Subjects were
asked to keep their eyes opened and to avoid eye movements by focus-
ing on a fixation cross displayed in the center of the screen. Subjects
were instructed to pay attention to the auditory stimuli.

The MEG task differed from Experiment 1 in the following respects.
First, although the Local Standard and Local Deviant sequences were
mainly identical, 10% of the trials were omission trials composed of
only four sounds. Furthermore, in two block blocks, the frequent audito-
ry sequence was also made of only four sounds. These conditions were
applied in order to test the brain responses to expected and unexpected
omissions. All trials made of only four sounds, or in a block where the
frequent sequences were composed of only four sounds were excluded
from the present analyses, but are reported in detail in Wacongne et al.
(2011). Second, subjects performed more trials than in the previous ex-
periment (780 trials instead of 500). Third, subjects were not asked to
count the number of globally deviant trials, but were only required to
pay attention to the auditory stimuli. This ‘attentive MEG’ experiment
aimed at demonstrating that the previously identified neurophysiolog-
ical signatures associated with local and global deviant trials were inde-
pendent of the counting task. This control can thus validate the
applicability of the Local-Global paradigm in a clinical setup, in which
patients may not be able to perform complex instructions such as
counting global deviant trials. At the end of the recording, a list of ques-
tions was submitted to the subject to check that they had detected the
various auditory regularities.

Signal space separation (SSS, Taulu et al., 2004) was applied to
suppress unwanted magnetic interferences (e.g. outside disturbances,
limb movements), to interpolate noisy MEG sensors and to realign
MEG data into a subject-specific head position. This reference head
position was determined from all head position measurements done
at the beginning of each recording session. This data transformation
helps the direct comparisons of MEG data between conditions and
blocks.

Except if explained otherwise, eye blinks and cardiac artifact were
corrected separately for each type of channel (gradiometer and mag-
netometers) by decomposing the average artifacts into principal com-
ponents, and regressing out those principal components from the
continuous recording — a technique known as signal space projection
(SSP). Noisy MEG sensors were removed with Maxfilter in the SSS
preprocessing step. All signals were digitally low-pass filtered at
40 Hz and down-sampled to 256 Hz. Trials were then segmented
from —800 ms to 700 ms after the critical stimulus onset, and were
corrected for baseline over a 200 ms window before the onset of
the first of the five sounds. Segmentation was done with Fieldtrip
(Oostenveld et al., 2011). Trials with more than 20% of bad sensors
were rejected.

Experiment 4: Distracting task (EEG)

In the fourth experiment (partially reported in Bekinschtein et al.,
2009), 9 subjects (6 females aged between 21 and 33 years old) were
actively distracted by a continuous speeded visual detection task si-
multaneous with the presentation of the Local-Global auditory stim-
uli, while EEG was continuously recorded at 250 Hz using a
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256-channel EEG geodesic net (EGI) referenced to the vertex. Partic-
ipants were instructed to detect a visual target in a rapid stream
of successive letters presented at the fovea and were explicitly
asked to neglect the unrelated auditory stimuli. The visual stimuli
were twelve 1° x 1° colored upper or lower case letters, and were
maximally presented for 1000 ms, using E-prime v1.1 (Psychology
Software Tools Inc.). To check that subjects did not consciously per-
ceived the global structure of the auditory stimuli, they were asked at
the end of the experiment whether they had perceived any global
regularity or novelty. EEG preprocessing was identical to Experiment 1.

Experiment 5: Levels of consciousness in patients (EEG)

One hundred and fifty eight (158) EEG recordings were acquired
from 104 distinct patients (Age = 48 years old, SD = 17 years, 35
females) while they performed the Local-Global paradigm. The first
65 recordings were partially reported in Faugeras et al. (2012). Imme-
diately before the EEG recording, each patient was carefully examined
by a trained neurologist (FF, BR, LN) and was assessed with the
French version of the Coma Recovery Scale — Revised (CRS-R,
Schnakers et al., 2008). This scale allows a clinical categorization of
each patient into one of three states of consciousness. The vegetative
state (VS) refers to awake patients who fail to perform very simple
tasks such as visual fixation and localization to noxious stimulations.
The minimally conscious state (MCS) refers to responsive but
non-communicating patients (Giacino et al., 2002). Recently, Bruno
et al. (2011b) proposed to sub-categorize this category into MCS +
and MCS — classes to further separate MCS patients who can follow
commands from those who cannot. As explained in the supplementa-
ry materials, MCS — can for instance track a visual stimulus while
remaining unable to demonstrate intentional communication. Finally,
conscious state (CS) refers to patients who present a functional com-
munication or a functional capacity to intentionally use objects. With
the exception of one recording (#140, see Supplementary Table 1),
the formal classification of consciousness states is formally based on
the CRS-R. In total, 70 EEG recordings were acquired from VS patients,
65 from MCS patients (in which 25 were acquired from MCS — pa-
tients) and 23 from CS patients. As can be seen in Supplementary
Table 1, some patients (n = 29) were recorded several times for clin-
ical purposes. Most of them (n = 18/29) were recorded in at least
two distinct state of consciousness. Patients' etiologies was heteroge-
neous: 30 had suffered from an anoxia, 33 from a stroke, 20 from a
traumatic brain injury (TBI) and 21 suffered from another etiology.
On average, EEG recordings were acquired 178 days after patients' in-
jury. All patients had been without sedation for at least 24 h prior to
the recording session. All clinical details are presented in Supplemen-
tary Table 1.

After clinical examination, each participant was asked to perform
a task identical to Experiment 1 (count the global deviants). Patients
were verbally stimulated between each block (~4 min) to ensure sta-
ble arousal, and instructions were explicitly repeated by the experi-
menter before each run. Although we present results demonstrating
that global effects are independent of the instruction to count, we rea-
soned that such instructions could help patients pay attention to the
auditory stimulations.

Recording high-density scalp ERPs from non-communicating pa-
tients in the intensive care unit or a similar environment is very chal-
lenging for technical reasons. First, the electro-magnetic environment
is noisy, and patients were not recorded in a shielded room but at
bedside. Second, many patients presented physiological artifacts
such as EMG, eye-movements and blinks, or other involuntary move-
ments. Therefore, it is particularly important to systematically evalu-
ate the technical quality of data before statistical analysis. Recordings
including at least one block with more than 50% of rejected trials
were discarded from further analyses in order to avoid possible biases
across experimental conditions. EEG preprocessing was identical to
Experiment 1.

Analyses

Classification

In the following experiments, we aimed at evaluating, for each
subject, the number of trials that could be accurately classified in
two distinct and orthogonal types of classes: (1) as local standard
(LS, i.e. an xxxxx sequence) versus local deviant (LD, i.e. an xxxxY se-
quence, ‘local classification’); (2) as global standard (GS, frequent se-
quence) versus global deviant (GD, rare sequence in a given block,
‘global classification’, see Fig. 1). The Local Standard class corresponds
to the union of LSGS and LSGD trials, and the Local Deviant class cor-
responds to the union of LDGS and LDGD trials. Similarly, the Global
Standard class corresponds to LSGS and LDGS trials, and the Global
Deviant class corresponds to LSGD and LDGD trials. These analyses
contrast trials evenly distributed across blocks and are therefore less
likely to be contaminated by block-design pitfalls (Goldfine et al.,
2012; Lemm et al., 2011).

The decoding steps are summarized in Supplementary Fig. S6. A
ten-fold stratified cross-validation was implemented for each within-
subject analysis. Stratified cross-validation balances the proportion of
each class across K folds (K = 10) in order to maximize the classifiers'
ability to generalize to unknown data. Stratified cross-validation is thus
particularly relevant for problem with unbalanced class frequencies.
Cross-validation consists in repeatedly applying a series of computations
fitted to a fraction of the dataset (1 — 1/K percent of the trials, called
the training set), and then evaluate the results on the remaining fraction
(1/K percent of the trials, called the test set). Within each fold, we estimat-
ed the mean (L.in) and the standard deviation (Oy4in) of each sample of
each sensor across all training trials. The training set X;,;, and the test set
(Xtest) were then normalized (Xeain = (Xtrain — lvltrain) / Otrainy Xeest =
(Xtest — Mirain) / Otrain)- As detailed below, in some analyses a univariate
feature selection was fitted on the training set and subsequently applied
to both the training and the test set. Finally, a support vector classifier
(SVC) with a linear kernel (Chang and Lin, 2001) was supplemented
with a continuous output method providing, for each trial, an estimate
of the probability of belonging to a given class (Platt, 1999). Amongst
the several advantages of this continuous method, we note that it allows
across-trial rank statistics and hence avoids the computationally expen-
sive permutation analysis generally required with discrete and/or imbal-
anced classifiers (see Fig. S5). After fitting the SVC on the training set,
classification scores were estimated on the independent test set. All
preprocessing steps posterior to trials segmentation (feature selection,
normalization, parameter selection etc) were fitted, within each cross-
validation loop, on the training set only, and are thus immune to circular
analysis issues (Lemm et al., 2011). Cross-validation was constructed
from chronologically shuffled data which minimizes effects of non-
stationarity that could have been observed between the beginning and
the end of the recording session for instance (Lemm et al., 2011). To
further minimize the possibility of a trial ordering confound, the cross-
validation was applied four times for each patient. Each of these cross-
validations was based on a different chronologically shuffled dataset
thus implying different folds too. This step did not however fundamental-
ly change the obtained results.

Classification scores were estimated with an empirical receiver-
operative curve (ROC) analysis applied on trials' predicted probabili-
ties. The ROC analysis is a standard 2-class (positive and negative)
non-parametric statistical method which allows the estimation of
the effect size of a Wilcoxon/Mann-Whitney U Test (Mason and
Graham, 2002). It is based on the plotting of true positive rate as a
function of false positive rate. The result of this function can be sum-
marized by the area under its curve (AUC). An AUC of 50% implies
that true positive predictions (e.g. trial predicted deviant and is devi-
ant) and false positive predictions (e.g. trial predicted as deviant but
is standard) are, on average, equally probable; an AUC of 100%
indicates a perfect positive prediction with no false positive. Amongst
the advantages of the ROC analysis, we note that, unlike mean accuracy,
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it is robust to imbalanced problems and, as a non-parametric analysis,
does not make any hypothesis about the distribution underlying the
data. The reported AUCs correspond to the averaged within-subject
effect size: the ability of the classifier to discriminate standard from de-
viant trials in a given subject. Note that the average within-subject AUC
can be relatively low and yet remains significant across subjects. Such
cases suggest that while the analysis robustly identifies a significant
effect across an entire EEG session, it is unlikely to be useful to online
decoding of single-trials.

Generalization across context

We implemented a set of generalization analyses which aimed at
testing the invariance of the neurophysiological signatures of local
and global novelty detection. These generalization analyses consisted
in training the classifier using data from a fixed context, and subse-
quently testing it in a different context. Classifiers were for instance
trained to discriminate local standard trials from local deviant trials
using only global standard trials (LSGS versus LDGS). The discrimi-
native hyper-plane (w) found was subsequently applied to trials
from a different global context, in this case the global deviants
(LSGD versus LDGD). This approach was also adapted to the contex-
tual generalization of global effects. In this case, the classifier was
first trained, for instance, to discriminate global effects in a fixed
local context (LSGS versus LSGD), and then tested on a different
local context (LDGS versus LDGD, see Figs. 1 & 4). This procedure
was systematically applied in a symmetrical manner: a classifier
was either trained in standard contexts and tested in deviant
ones, or trained in deviant contexts and tested in standard ones,
and the results were then averaged over both directions of general-
ization. This procedure thus aimed to identify the neural signatures
of novelty processing that are robust and generic to different con-
texts, with the added difficulty of being based on only half of the
training trials.

Time-windows of interest

We applied several multivariate pattern classifiers on different
temporal regions of interest (Fig. S5). First, we repeatedly tested a
classifier using all channels on a sliding window of a single time
sample (~4 ms). Second, we implemented a set of classifiers using
multiple time samples. These classifiers combined either all or a
sub-selection of the time samples following the onset of the last
sound (t = [0,736] ms): the early time-window refers to t = [0,
367] ms, and the late time window refers to t = [367, 700] ms. As
a control, supplementary analyses also tested the ability of classifiers
to extract the electrophysiological information on a pre-stimulus
window ([—367, 0] ms relative the onset of the fifth sound). Finally,
the last approach consisted in averaging brain signals within a given
time windows (Fig. S3). The method, rationale and results are
presented in the supplementary materials.

Support Vector Machine (SVM)

Each trial was transformed into a p-dimensional vector x, in which
each coordinate (“attribute”) corresponds to a single data sample at a
given sensor (P = Ngensors * Nsamples). The entire dataset can hence be
represented as a matrix X in which each row i corresponds to one trial
X;, and each column corresponds to an attribute. Moreover, trial classes
(standard or deviant) can also be represented as a binary vector y, in
which standard trials are labeled as 1, and deviant trials as — 1. As for
all linear classification analyses, the aim is to find a hyperplane (materi-
alized by a p-dimensional vector of weights w) that discriminates the
two classes (Vstandard and Yeeviant). FOr @ new trial Xpew, the sign of the
dot product X,ew. W is then generally used to predict its class. In the
present case, a cumulative probability distribution function was fitted
to the training set using Platt's method (Platt, 1999). The signed
distance computed from the dot product Xnew. W could thus be
transformed into a continuous value bounded between 0 and 1. This

value is directly representative of the probability of belonging to one
of the two classes. Note that rank statistics are not affected by the trans-
formation of the signed distance between a given trial and w by a mo-
notonous function, such as a cumulative distribution function. When
the number of trials is small compared to the number of attributes
(here up to 56,000), there are infinitely many w that can fit the training
data equally well. To limit this issue, we implemented within the
cross-validation, a dimensionality reduction based on a univariate
feature-selection step that selects a subset of attributes prior to the clas-
sification analysis. Feature selection was performed with an ANOVA
nested within the cross-validation step. Various levels of the ANOVA p
value threshold were explored in Experiment 1 (1%, 5%, 10%, 30%, 50%,
100%), and on this basis a fixed value of 10% was chosen for all other ex-
periments. No feature selection was used for the decoding of each time
point as dimensionality was relatively small (e.g. from 40 channels to
306 channels depending on the type of recording). SVC's regularization
parameter was calibrated by nested cross-validation in Experiment 1
(.01,.1,.3,.5,1,2) and remained arbitrarily fixed (1) for all other exper-
iments as its values did not dramatically affect classification scores. Fi-
nally, sample weights were applied in proportion of the trial classes
(LSGS, LSGD, LDGS, LDGD) so that each of the category would equally
contribute to the definition of w, and this independently of the
contrast of interest (local or global). This step is known to contribute
to the minimization of imbalanced dataset artifacts and thus maximizes
the number of trials that can be considered in the training process. In
practice this step did not lead to a strong improvement of classification
performance. All multivariate analyses were performed with the Scikit-
learn toolbox (Pedregosa et al., 2011).

As a control, in supplementary analyses, we applied the same ap-
proach after randomly shuffling the label (y) of each trial and subse-
quently training the classifier with this incorrect class labeling.
Ideally, this method would be applied 10,000 times per subject to
allow the estimation of the null distribution of each subject. However,
this approach would be too computationally expensive with the
present dataset, because the classification of a single EEG recording
session takes approximately 30 min of computer time. We thus ap-
plied shuffling only once per EEG recording, and thus only report
across-subjects statistics.

Statistics

ROC analyses and AUCs are methods to estimate the size of a given
effect, and in our case, the classifiers' ability to discriminate two types
of trials. To test for statistical significance within subjects, we
performed Mann-Whitney U tests across trials. Because the classifier
attributes a continuous estimate to each trial (its predicted probabil-
ity of belonging to a given class C), we can indeed efficiently compare
those predicted probabilities across the two levels of the trials' true
classes. For instance, for each trial, the classifier outputs a predicted
probability of belonging to the standard class (S). Note that the prob-
ability of belonging to the other, deviant class (D) can be calculated as
P(D) = 1 — P(S). We can then compare the predicted probability of
belonging to S depending on whether the trials truly are standard
(y = S) or not (y = D) and thus apply a traditional Mann-Whitney
U Test between P(S|ly = S) and P(S|ly = D).

Similarly, across-subjects statistics were performed using Wilcoxon
Signed Rank Tests based on the mean predicted probability conditional
of trials' true classes. For each subject, the predicted probability of belong-
ing to the standard class (S) is averaged across standard trials (y = S)
and, separately, over deviant trials (y = D), yielding P(Sly = S) and
P(Sly = D). For each subject i, we can thus compute the sum of positive
ranks and perform a Wilcoxon test. A correction for multiple compari-
sons, either across classifiers or across subjects, was performed using
the standard False Discovery Rate (FDR) correction, and is hereafter re-
ferred to as pgpr. Statistical analyses were performed with R and
MATLAB 2009b.
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Results

The Local-Global paradigm enables the isolation of two types of
neurophysiological activity: either the response to a change in pitch
within a five-sound sequence (local effect), or the response to a rare
auditory sequence within a block dominated by another frequently
repeated sequence (global effect, Fig. 1).

Topographical analyses

Traditional ERP analyses revealed topographies and time courses
similar to the ones observed in previous studies (Bekinschtein et al.,
2009; Faugeras et al., 2012; King et al., 2011; Wacongne et al., 2011).
EEG results from Experiment 1, summarized in Fig. 2, showed that local
effects arose between approximately 130 ms and 350 ms and mainly
evoked a frontal negativity (MMN) followed by a central positivity
(P300a). In contrast, global effects were mainly observed from 200 ms
onwards, and were characterized by a sustained centro-posterior posi-
tivity (P300b) peaking between 300 ms and 500 ms. These two effects
replicate the EEG components previously reported in this type of para-
digms. Interestingly, and as can be seen on Fig. 2, a vast amount of
inter-individual variability can be observed in the single-subject data.
This variability thus highlights the potential usefulness of tailoring the
analyses to each subject.

Decoding across time circumvents individual variabilities

To maximize the detection of the neurophysiological responses
elicited by local and global novelties, we applied, to each subject
separately, a multivariate pattern (MVP) classifier. The classification
scores of each classifier reported below refer to the area under the
curve (AUC) estimated separately for each subject from a receiver
operative curve analysis (see Methods).

We first aimed at characterizing the dynamics of classification
scores across time, and thus trained a different classifier for each
time sample. As expected, during the time period preceding the
onset of the last sound, both local and global decoding remained at
chance level (AUC did not differ from 50%). Accuracy of the local de-
coder exceeded chance level earlier in the epoch than did the

Individual

local effects
[100, 200] ms

Local

accuracy of the global decoder. As can be seen on Fig. 3a, two peaks
of local decoding were observed in each experiment between
150 ms and 300 ms after stimulus onset. Mean single-trial local clas-
sification scores across subjects varied from 62.0% to 77.8% of trials
depending on the experimental apparatus (all pgpg < .05).

The dynamics of global effects were more variable across experi-
ments. Experiment 1, in which subjects were instructed to count
rare global deviant trials, revealed a quick rise of EEG-based classifica-
tion scores around ~130 ms, followed by a sustained period during
which global classification remained above chance almost throughout
the epoch (between 300 ms and 730 ms). However, in intracranial
EEG (Experiment 2), despite similar instructions, only a transient pe-
riod of global decoding was seen, peaking at ~260 ms, then dropping
back to chance level. Finally, Experiment 3, in which subjects were
recorded with MEG and were instructed to merely pay attention to
the sounds, demonstrated sustained global classification scores from
200 ms onwards (AUC = 66%). These results suggest that the neuro-
physiological signatures of novelty detection seem relatively inde-
pendent from task instructions.

Interestingly, a sharp increase in global classification scores was
observed as early as 150 ms in the attentive MEG condition (Experi-
ment 3). Although much smaller (AUC = 55.0%, prpr < .05) a similar
trend was also apparent in the counting EEG condition (Experiment
1). Finally, intracranial recordings, mainly taken from the temporal
cortices (Supplementary Fig. 2) presented significant global classifica-
tion performance between 100 ms and 300 ms (max AUC = 66.1%,
pPror < .05). Taken together, these results suggest, contrary to what
was previously suggested (Bekinschtein et al., 2009), that global nov-
elty can affect early processes too.

Finally, subjects who were distracted by a concurrent visual task
(Experiment 4) presented lower but still significant local classifica-
tion scores (AUC = 63.7%, prpr < .05). Moreover, distraction dramat-
ically impaired global classification scores, which consequently failed
to reach significance across subjects (AUC = 54.0%, pgpr > .05).

Overall decoding local and global effects across time showed that
multivariate pattern classifiers could extract qualitatively similar ef-
fects as the ones observed from ERPs (for ERFs see Wacongne et al.,
2011) but could also reveal subtle effects such as an early global effect
unreported in previous studies.

Global

Individual

global effects

[400, 500] ms
S3

-PFDR<.05

Fig. 2. Inter-individual variability in the topography of EEG effects in Experiment 1. In the two central rows, control EEG topographies of the mean local effect (LD > LS) and of mean
the global effect (GD > GS) are plotted as a function of time following the onset of the fifth sound. Black dots correspond to EEG channels presenting significant differences between
standard and deviant conditions, corrected for multiple comparisons with FDR. The top and bottom rows show the topography in individual subjects, separately for the local and
global effects in their respective time windows of interest. Local deviant trials elicit significant differences over anterior regions with an initial negativity peaking around 150 ms
followed by a short central positivity between 200 and 300 ms. Global deviant trials elicit a centro-posterior sustained positivity mainly from 300 ms onwards. While the group
statistics replicate the traditional MMN and P3b associated with the Local-Global paradigm (Bekinschtein et al., 2009), individual analyses reveal substantial topographical variabil-
ity in healthy subjects, and thus highlight the usefulness of tailoring the analyses to each subject.
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Fig. 3. Local and global multivariate decoding scores. a. Decoding of the local effect (red) and of the global effect (blue) was applied successively to each time sample of the scalp
EEG, MEG and intracranial EEG recordings obtained under different experimental conditions: subjects either counted the global deviant trials (Experiments 1-2), were attentive to
the sounds (Experiment 3), or were distracted by a visual task (Experiment 4). Results demonstrate a non-sustained decoding of the local effect (~130-400 ms), with above-chance
performance regardless of recording apparatus and experimental condition. Decoding of the global effect appeared later and was more sustained in time, but was absent in the
distracted condition. b. Comparison of the decoding scores based on the best time point (left dot in each graph) or the full trial dynamics (right dot). Each dot represents the
decoding score of an individual subject. All subjects but one presented significant local decoding scores. All experiments led to significant global decoding scores, except for the
distracted condition. Local and global decoding scores based on the dynamics of the electrophysiological signal across multiple time samples (t,;) led to a significant improvement

of decoding scores in most scalp recordings.

Using signal dynamics facilitates decoding

Decoding a spatial topography at each time sample, as was done in
the previous section, can overcome individual topographical variabil-
ity but remains dependent on the precise timing of a given effect. To
maximize the extraction of local and global effects, we thus trained
another decoder using the full dynamics of brain signals on a given
trial. For each subject separately, and for local and global effects,
this decoder was trained to distinguish the standard and deviant trials
based on all the information available on a given trial (all channels x all
time samples). Results are presented in Fig. 3b.

Overall, this dynamic approach provided better classification scores
than in the previous section. To prove this, we compared it to the perfor-
mance of the best time sample of the previous section. Note that this is a

very conservative test. Indeed, the a posteriori selection of the best time
sample is not cross-validated, and thus likely overestimates the actual
scores one could hope to obtain if an independent data sample was
available (e.g. Vul et al., 2009). Still, an ANOVA across subjects, contrasts
(local and global) and type of classifier (dynamic versus best single time
point) revealed a significant main effect of classifier type, F(1,37) =47.9,
p < 10~ '°, indicating better classification overall with the dynamic ap-
proach (mean AUC = 72.0%) than with the previous approach (mean
AUC = 63.7%). This improvement was robust across recording methods
(all p < .05) except for intracranial EEG (p > .33), and therefore suggests
that the classifier manages to exploit the time course of brain signals to
provide information at the single-trial level (See Supplementary Fig. 1
for a depiction of single trials' local and global predictions in Experiment
3.). Supplementary analyses confirmed that the observed improvement
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of decoding scores reflects an ability of the classifier to extract the dy-
namics of the brain signals (Fig. S3).

In more detail, using the dynamic approach, the local classification
scores reached an average AUC of 77.8% (p < .01) in the counting EEG
condition (Experiment 1), 73.2% (p < .01) in the counting intracranial
condition (Experiment 2), 73.5% (p < .01) in the distracted EEG con-
dition (Experiment 4) and 89.8% (p < .01) in the attentive MEG con-
dition (Experiment 3). The latter performance, interestingly, was
higher than the one obtained from high-density EEG (all p <.01)
and even than intracranial recordings (p < .05). Importantly, across
four experiments, all but one subject (from the distracted group)
presented significantly above chance local classification scores.

Similar results were obtained for global classification scores across
Experiments 1-3. The counting EEG condition (Experiment 1) led to
an average AUC of 67.9% (p < .01), the counting intracranial condition
(Experiment 2) led to an average AUC of 66.1% (p < .01) and the at-
tentive MEG condition (Experiment 3) led to an average AUC of
72.3% (p < .01). Amongst the 28 subjects who were paying attention
to the sounds, only one subject failed (from Experiment 1) to present
a significant global decoding score.

Crucially, global classification scores were dramatically reduced in
distracted subjects (p < .01 as compared to EEG and MEG recordings —
Experiments 1 and 3; p < .05 as compared to intracranial recordings —
Experiment2). Not only was the global decoding score not-significantly
different from chance for distracted subjects (AUC = 55.0%, p > .05),
but 8 out of 10 subjects did not present any significant global decoding.

In summary, by maximizing the extraction of information from in-
dividual recordings, these results demonstrate that the human brain
response to auditory deviancy, both local and global, can be detected
in single trials and a fortiori in individual subjects. It also confirm that
this information is not entirely dependent on the fact that subjects are
asked to count the rare global deviant trials, but remains present
under the instruction to merely attend to the sounds. Finally, the
comparison between the active and the distracted conditions con-
firms the automaticity of processes underlying local novelty detec-
tion, and the necessity of attention in the detection of global novelty.

Generalization across contexts isolates rule-specific effects

The above analysis, while sensitive, could be partially affected by a
contextual modulation of the local mismatch effects (MMN). Indeed,
the MMN elicited by an xxxxY sequence is stronger when this se-
quence is rare than when it is frequent (Wacongne et al., 2012).
This effect could be used by the global decoder to provide early
above-chance classification of global deviants from global standards,
even though it does not reflect a genuine response to global novelty.
To address this issue, we reasoned that a cross-context generalization
would provide a stricter criterion for a physiological signature of the
brain's response to global novelty. For instance, a neuronal process
responding to rare sequences, if generic, should be found whenever
a rare global deviant sequence is presented, whether this sequence
is xxxxY (in blocks where xxxxx is the frequent stimulus) or Xxxxx
(in blocks when xxxxY is the frequent stimulus). Such generalization
analysis could sort out the genuine signatures of global effects from
the modulations of local novelty effects. With this idea in mind, we
investigated the generalization of global classification across different
local contexts (and vice-versa see Methods), and restricted the local
and the global analyses to the early (0-367 ms) and to the late
(367-700 ms) time windows respectively. As intracranial classifica-
tion scores were not significant in the late time window (Fig. 3), we
tested this analysis on Experiments 1, 3 and 4. Results are presented
in Fig. 4.

An ANOVA across subjects, contrasts (local or global) and type of
classifier (using both contexts or within-context decoding) showed
that classification scores resulting from within-context decoders were
smaller than those obtained from decoders using all trials (Introduction

section): F(2,28) = 26.56, p < 10~ 5. This is expected as restricting the
decoder to trials performed in a given context automatically reduces
the number of trials available for the training set. Note however that
the within-context classification scores remained significantly above
chance in all experimental conditions: Local: Experiment 1: 69.1%
(p <.01), Experiment 3: (71.2% p <.01), and Experiment 4: 68.8%
(p <.01); Global: Experiment 1: 66.0% (p < .01), Experiment 3: 63.2%
(p < .01), and Experiment 4: 56.7% (p < .05).

Cross-context generalization scores appeared significantly worse
than within-context classification scores (Local: Experiment 1: p < .01,
Experiments 3-4: p < .05; Global: Experiment 1: p < .01, Experiments
3-4: p <.10). As can be seen in Fig. 4a presenting the MEG generaliza-
tion scores across time, the differences between within-context and
across-context scores were mainly visible i) in early time windows;
and ii) in the global contrast. This result suggests that part of the early
global effect previously described was due to an early modulation of
novelty responses that did not generalize across contexts. However,
the overall reduction of cross-context generalizations suggests that
this conceptually more suitable analysis may, in practice, be less appro-
priate when the signal-to-noise ratio is low.

Crucially, whereas all local generalization scores remained signifi-
cantly above chance (Experiment 1: 57.1%, Experiment 3: MEG: 66.3%,
Experiment 4: 61.5%, all p <.01), global generalization scores were
now exclusively significant in subjects who were paying attention to
the sounds (Experiment 1: 57.9%, Experiment 3: 60.2%, both p <.01).
Distracted subjects did not present any significant global generalization
scores (48.1%, p > .10), and the latter were significantly smaller than
the ones obtained in the counting (Experiment 1: p <.001) and the
attentive (Experiment 3: p <.0001) conditions.

Finally, it is interesting to note that global generalization scores
steadily increased from 180 ms after stimulus onset, until they eventu-
ally reached, at the end of the epoch, scores that resembled those
obtained with the within-context decoding analysis in MEG (Fig. 4a).
This pattern of results suggests that distinct neurophysiological signa-
tures were initially elicited by the two forms of global deviancy tested
here. Most likely, the rare xxxxY sequence was easily detected in an
XXXXX context, whereas, conversely, the rare Xxxxx sequence took a
longer time to be detected in an xxxxY context. Late in the epoch, how-
ever, the neuronal activity that they evoked eventually converges to the
same state, thus permitting similar levels of within-block classification
and cross-block generalization.

Patients: Decoding across time and dynamics

The above results demonstrate that multivariate classifiers effi-
ciently capture the dynamics of the brain responses to local and glob-
al deviancy. In particular, we confirmed that the processing of local
novelty was relatively independent of attention, while the late effects
elicited by global novelty only emerged and generalized across con-
texts in attentive subjects. These analyses allowed us to formulate a
simple hypothesis: in non-communicating patients, cerebral activity
specific to local and to global novelty may provide useful markers of
automatic versus conscious processing of auditory regularities. We
thus applied the present method to 158 EEG recordings acquired
from patients diagnosed in vegetative state (VS), minimally conscious
state (MCS) or conscious state (CS). Individual and group results are
summarized in Fig. 5.

First, it appeared that the decoding of the EEG dynamics of the pa-
tients was qualitatively similar to what was observed in healthy con-
trols: local classification scores were maximal between 150 ms and
300 ms after stimulus onset, whereas global effects, if present, appeared
later and were relatively sustained between 250 ms and 700 ms (see
Fig. 5a). Classifiers based on the full dynamics of the EEG signals (see
Methods) were again superior to selecting the best time point obtained
from healthy controls (local: p <.10~>, global: p < .01) or directly from
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Fig. 4. Generalization of the multivariate decoding across experimental contexts. Generalization analyses consist in training the classifier in a given context (e.g. local standard trials
only) and testing the ability of the classifier to generalize to another context (e.g. local deviant trials only). For example, we train the classifier to discriminate global deviants from
global standards, within the context of local standard trials, and then we test the performance of the classifier on the same task, but within the context of local deviant trials. a. Local
(red) and global (blue) scores obtained from within-context (D) and cross-context (G) generalization analyses are plotted as a function of time. Local effects generalized early on
(orange) and rapidly vanished. Global effects generalized increasingly well over time (cyan) until generalization performance did not differ significantly from decoding perfor-
mance (blue). b. Each dot represents the decoding and generalization score of an individual subject. Although the generalization of local effects was significantly smaller than
decoding performance, it remains above chance in all experiments. Generalization of global effects was however only significant in the attentive and counting condition.

the patients (local: p <.0001, Global: positive trend p > .10). These re-
sults therefore confirm the utility of our decoding approach.

Despite similar qualitative results, quantitative comparisons with
healthy controls (Experiment 1) showed that VS, MCS and CS patients
presented, overall, lower local classification scores (AUC = 56.3%,
p < 107°) and lower global classification scores (AUC = 51.7%, p < 10
—5). Interestingly, when comparing patients to healthy distracted sub-
jects (Experiment 4), results demonstrated significant differences only
in local classification scores (p < 10~%) but not in global classification
scores (p > .1).

Despite being reduced, the patients' classification scores were not at
chance. Local AUCs ranged on average from 55.3% amongst VS patients,
56.1% amongst MCS patients, to 60.0% amongst CS patients. These values
were above chance within each group of patients (all p < .0001, Fig. 5).
Local classification scores of VS and MCS patients were not significantly
different from one another (p > .10). Further analyses showed that VS
patients did not differ from either MCS — patients (p = .688, AUC =
52.7%) or from MCS+ patients (p = .239, AUC = 56.8%). An ANOVA
using distinct patients as a random factor only revealed a marginal inter-
action between the state of non- or poorly-communicating patients
(1: VS, 2: MCS) and the local class (1: standard, 2: deviant):
F(1,105) = 3.63: p = .059. However, CS patients presented significant-
ly higher local classification scores than both MCS (p <.05) and VS
(p < .01) patients. Crucially, for global decoding, the scores were above
chance for MCS (AUC = 51.7%, p<.01) and CS (AUC = 56.2%,
p <.001) patients, whereas VS patients, on average, did not present
any significant global decoding effects: AUC = 50.2%, p > .10. Moreover,
the global decoding AUCs of VS patients were significantly smaller than
both those of CS patients (p <.0001) and those of MCS patients

(p < .05). Note that the latter also presented lower global classification
scores than CS patients (p < .01). Further analyses revealed that where-
as VS patients did not differ from MCS— (p = .274, AUC = 57.4%),
their scores were significantly smaller than those of MCS+ patients
(p = .038, AUC = 62.0). An ANOVA using distinct patients as a random
factor confirmed this effect by demonstrating a significant interaction
between the state of non- or poorly-communicating patients (1: VS, 2:
MCS) and the global class (1: standard, 2: deviant): F(1,105) = 4.14;
p = .044. The above group differences could be due to a minority of
subjects, or to an overall group effect. An advantage of the present
single-trial MVP analysis is that it provides within-subject significance.
We thus quantified the proportion of patients who presented significant
local and global classification scores. The results, summarized in Fig. 5b
showed that 51% of VS patients, 65% of MCS patients and 70% of CS pa-
tients presented significant local classification scores. This suggests the
presence of an MMN amongst these subjects. The proportions of pa-
tients with significant Local classification scores did not differ across
groups, neither with full (VS versus MCS versus CS) nor with pair-wise
(VS versus MCS, MCS versus CS, and CS versus VS) chi-square tests
(all p > .10).

The results were quite different for the global decoding, as the
proportion of patients presenting significant global classification
scores nearly doubled across states of consciousness. First, only 14%
of VS subjects showed significant global decoding. Amongst these
14%, half presented scores which resisted a FDR correction for multi-
ple comparisons across subjects. Like other studies, this result sug-
gests that a small proportion of carefully diagnosed VS patients may
still have residual consciousness (Monti et al., 2010). Notably, signif-
icant local and global decoding were not associated with etiologies
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Fig. 5. Local and global decoding in patients whose state was diagnosed as vegetative (VS), minimally conscious (MCS) and conscious (CS). a. Local (top) and global (bottom)
decoding scores are plotted as a function of time. Overall, local and global decoding scores follow the same qualitative trends as the ones observed in healthy subjects (Fig. 2).
CS patients (blue) presented higher local and global decoding scores over time than either MCS (green) or VS (red) patients. b. Decoding scores obtained from the EEG dynamics
of each trial are summarized for each state of consciousness. The graphs give the mean and standard error of the decoding scores in each group, its significance relative to chance
level, and the significance of pair-wise group comparisons. Pie charts summarize the proportion of patients who presented significant decoding scores.

(local: ¥(3,N = 70) = 2.30,p = .513; global: ¥?(3,N = 70) = .66,
p =.882) nor with the delay separating the insult from the EEG re-
cording (both p > .669). Second, in contrast, 31% of the MCS patients
and 52% of the conscious patients presented significant global scores.
The proportions of significant global scores across the three states of
consciousness were significantly different from one another: (2,
N = 158) = 13.73, p <.001. Pair-wise chi-square tests confirmed
this finding by showing a smaller proportion of patients with global
decoding in VS relative to MCS (x*(1, N = 135) = 4.39, p = .036)
and to CS (x%(1, N = 93) = 11.74, p = .0001). No differences were
observed between the proportions of CS and MCS patients with sig-
nificant global decoding (x?(1, N = 88) = 2.50, p = .113).

To increase the specificity of the present results, we also applied the
generalization method detailed above. Scores obtained from within-
context classification were similar to but lower than the classification
scores obtained from the joint analysis of both contexts (unsurprisingly
given that the number of training trials was halved). For the local effect,
while not differing from one another (VS-MCS: p = .252), local scores
from VS (AUC = 56%, p <.0001) and MCS (AUC = 57%, p <.0001)
were significantly smaller than those obtained than CS patients
(AUC = 61%, p <.0001, CS-VS: p = .005, CS-MCS: p = .039). Global
within-context classification scores presented a similar pattern: VS
(AUC = 54%, p <.0001) and MCS (54%, p < .0001) scores did not differ
from each other (p = .969), but were significantly smaller from CS
(59%; both p = .001). Finally, cross-context generalization scores
were low (all below 53%). Local cross-context generalization perfor-
mance was lower for VS patients than for MCS (p = .038) and CS
(p = .003) patients, but none of the global cross-context generalization
scores differed from one another (all p > .287).

In summary, by quantifying the proportion of patients with signifi-
cant local and global effects, we confirmed the earlier finding that
DOC patients may still exhibit similar local mismatch effects, relatively

independently of their conditions (Bekinschtein et al,, 2009; Faugeras
et al,, 2012; Fischer et al., 1999; Naccache et al.,, 2005; Tzovara et al.,
2013), and found that the capacity to show global effects was modulat-
ed by the state of consciousness. A classifier based on the whole set of
trials and their temporal dynamics proved the most sensitive tool to de-
tect these local and global effects. Cross context generalization was un-
able to dissociate the three types of patients, presumably because of a
halving of the number of training trials.

Discussion

In this study, we investigated, at the single trial level, the neuronal
response following the violation of two embedded auditory regularities
structured across two different time ranges (“local” and “global”). We
implemented, for this purpose, a series of multivariate pattern (MVP)
analyses extracting this information from the temporal dynamics of
the neurophysiological activity recorded with high-density EEG (Exper-
iment 1 and 4, n = 20), intracranial EEG (Experiment2,n = 9) or MEG
(Experiment 3, n = 9). Analyses were performed on attentive and dis-
tracted healthy control subjects, as well as on three types of patients,
namely patients in vegetative state (VS, n = 70), minimally conscious
state (MCS, n = 65) and conscious state (CS, n = 23), all recorded
with high-density EEG for clinical purposes.

Results from control experiments revealed that when subjects
were attentive, single-trial classification could lead to AUCs between
73% and 90% for local novelty, and between 66% and 72% for global
novelty, depending on the recording apparatus (Experiments 1-3).
Although EEG, MEG and IEEG record different types of signals and
noise and are therefore not easily comparable, it is remarkable to
note that MEG recordings achieved classification scores comparable
to, or even higher than intracranial EEG data. Moreover, we showed
that providing the decoder with multiple time samples systematically
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improved classification as compared to a decoder trained on the sin-
gle best time sample. This result therefore demonstrates the utility of
MVP classifiers in the present context, and confirms that this method
can reliably and automatically extract neuronal dynamics specific to
each subject in order to efficiently classify each trial.

It should be noted that our method, although different in technical
details, follows a similar approach to that taken in a recent study
(Tzovara et al., 2013). Tzovara and collaborators decoded, from EEG re-
cordings of coma patients, the difference between regular and irregular
trials, that is, the equivalent of the local effect in the present study. To
classify each trial, the authors used a different method which modeled
the ERPs with a mixture of Gaussians. Advantages and disadvantages
can be identified in each of these classification methods. Our approach
does not make any Gaussian assumptions, can make use of imbalanced
training dataset and can extract a large number of different types of to-
pographies by searching across all channels — which therefore are not
restricted to EEG. In contrast, Tzovara and collaborators first transform
the ERPs into components. This computational step reduces the dimen-
sionality of the data, and thus likely improves the efficiency of the ensu-
ing classification process. However, their classifier is unable to
optimally use imbalanced datasets, which are necessarily encountered
in this type of novelty paradigm. Taken together, these differences
may explain why our approach provided slightly better classification
scores (AUC = 77.8%) than theirs (AUC = 71%) in similar control sub-
jects recorded with EEG. Future efforts should capitalize on a combina-
tion of these methodological technicalities.

Crucially, our MVP classifiers replicated and extended previous
observations on the key electrophysiological properties of local and
global effects (Bekinschtein et al., 2009). As expected, local novelty
mainly affected the early part of the neural signal (<300 ms) and
remained unaffected by visual distraction. In sharp contrast, global
novelty elicited late and stable effects in both counting and attentive
subjects, but most distracted subjects presented dramatically re-
duced, and in fact, non significant global classification scores.

The present decoding approach allowed us to investigate whether
the neuronal activities elicited by local and global novelties are specif-
ic and reproducible enough to generalize from one context to the
other. Specifically, we asked which aspects of the neuronal response
to global novelty could generalize from a context in which the
xXxXY sequence was rare (in xxxxx blocks) to another in which the
XXXXX sequence was rare (in xxxxY blocks), and vice-versa. General-
izations of the global effects confirmed a progressive increase in the
similarity of these two types of global novelty responses from
180 ms onwards, until they eventually fully resembled each other at
the end of the trial. Conversely, local novelty detection showed a sig-
nificant generalization across contexts only in the early part of the
event-related response. Taken together, these results reveal a double
dissociation. Local effects are attention independent, context depen-
dent and are not maintained across time. By contrast, late global ef-
fects are attention-dependent, context-independent and stable for a
prolonged temporal duration.

One of the major motivations of the Local-Global paradigm is to
provide a minimal design that dissociates two types of auditory nov-
elty processing — one generating the MMN followed by a P300a, both
likely being automatic, and the other generating the P3b which de-
pends on working memory and conscious access. This goal is of par-
ticular importance for DOC patients. Despite an increasing interest
for this clinical population (Laureys et al., 2004; Owen et al., 2009),
unambiguously distinguishing patients suffering from communica-
tion disorders from those with a genuine loss of conscious processing
remains a challenging task (Laureys and Schiff, 2011; Owen et al,,
2006). In this context, our present capacity to dissociate, from EEG
alone, an automatic process of local novelty detection from a later
process that depends on conscious processing thus opens up the
possibility of detecting states of consciousness independently of the
patient's ability to communicate. Remarkably, Bekinschtein et al.

(2009) have applied the Local-Global paradigm to four MCS and
four VS patients, and shown that the latter were less likely to present
late global effects than the former. More recent studies testing larger
groups of patients however failed to identify significant global effects
in these two groups of patients (Faugeras et al., 2012).

We here applied our MVP classifier to 158 EEG recordings ac-
quired at bedside from awake but non- or poorly communicating pa-
tients, whose state of consciousness (VS, MCS or CS) was assessed
immediately before the experiment. The state of consciousness is
here determined clinically based on the CRS-R (Giacino et al., 2004;
Schnakers et al., 2008). This immediate assessment differs from clin-
ical practice in which several assessments are often conducted to
maximize the chance of detecting residual consciousness. Here, we
aim at identifying a neural marker of consciousness state. It is there-
fore crucial to determine the patients' state of consciousness at the
time of their EEG recording.

The results demonstrated that, at the group level, our method could
accurately distinguish neuronal responses elicited by local deviants
relative to local standard sounds: 51% of VS, 65% of MCS and 70% of CS
patients presented significant local classification scores. Moreover,
whereas CS patients presented significantly higher classification scores,
VS and MCS patients did not differ from one another, suggesting that
the cerebral processes that detect local novelty are not unique to con-
scious processing and can remain functional in all states of conscious-
ness. These results are in line with a series of studies demonstrating
the presence of the MMN in many DOC patients (Bekinschtein et al.,
2009; Faugeras et al., 2012; Fischer et al., 2010; Wijnen et al., 2007), in-
cluding coma patients (Fischer et al., 1999; Kane et al.,, 1996, 2000;
Naccache et al., 2005; Tzovara et al., 2013). Indeed, they confirm that
the effects elicited by local changes in pitch, as observed in the auditory
odd-ball paradigm, are poor predictors of the state of consciousness
(Bekinschtein et al., 2009; Tzovara et al., 2013). The lack of a detectable
local effect in some patients could be due to a variety of causes, includ-
ing poor signal-to-noise, excessive number of artifacted trials, or an im-
pairment to auditory pathways.

The situation was quite different for the global effect. Crucially, the
detection of global deviants was considerably reduced in patients as
compared to healthy controls, but as predicted it remained weakly but
significantly above chance amongst MCS and CS patients. These results
demonstrate that the present approach outperforms traditional methods
which have, so far, failed to identify a significant global effect in these
two groups of patients (Faugeras et al., 2012). Importantly, as a group,
VS patients did not present any significant global effects, and their classi-
fication scores were smaller than those of MCS and CS patients. Taking
advantage of the fact that the present analyses allow for single-subject
predictions, we showed that only a small proportion (14%) of VS patients
exhibited a significant global decoding score, and that this proportion
was significantly smaller than the proportions of MCS (31%) and CS
(52%) patients in whom a global effect could be significantly detected.
This finding confirms that global effects provide a reliable, although par-
tial, index of the state of consciousness.

Further studies will need to assess the sensitivity and specificity of
the global effect as a test of consciousness. Although a small fraction
of VS patients still showed a significant global effect, this needs not
necessarily imply a failure of our test, but rather may indicate that
the clinical label of VS may not be fully reliable. Indeed, fMRI studies
also reveal that a fraction of VS patients, continue to present complex
cortical responses that suggest preserved consciousness (Monti et al.,
2010). We have previously reported that two VS patients with a sig-
nificant global effect moved to the MCS category within the next
few days (Faugeras et al., 2011).

In the converse direction, unfortunately, our test clearly lacks sen-
sitivity since about half of CS patients and two-third of MCS patients
did not present any significant global classification scores. Further re-
search should determine i) if this problem can be remedied, for in-
stance, by using a larger number of trials, different days of testing,
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or better noise reduction techniques, or ii) if it reflects a genuine cog-
nitive limit, whereby patients are conscious but too cognitively im-
paired to successfully detect global novelties. Another important
issue is that the global effect is known to vanish under conditions of
inattention (Bekinschtein et al., 2009). Yet, our auditory stimuli are
monotonous and devoid of interest. Some patients are thus likely to
lose focus during the 40 min recording session. In the future, special
efforts should thus be dedicated to enhance the patients’ motivation
and attention towards the stimuli, as well as to improve the quality
of EEG recordings.

These difficulties are not unique to our test. Most other tests of
consciousness currently require patients to understand and maintain,
for several minutes, a complex instruction such as imagining playing
tennis (Owen et al., 2006), or retrieving the answer to a spoken ques-
tion (Monti et al., 2010). These tests, like ours, are therefore asym-
metrical: when positive, they are highly indicative of preserved
consciousness, but they may also fail to detect residual consciousness
if the patient suffers from hearing, linguistic, attentional or working
memory deficits. For instance, in the Monti et al. (2010)'s study, 30
out of 31 MCS patients, who therefore gave occasional behavioral
signs of consciousness upon clinical examination, showed no sign of
response to command via imagined tennis playing or spatial naviga-
tion. Relative to these fMRI studies, the current approach presents
at least two advantages. First, it relies on a method (EEG) which is
easy to implement, available in all clinics and applicable at bedside.
Second, it only depends on subjects' attention to the stimuli and
does not seem to require complex task instructions.

While the ability of the classifiers to discriminate single trials
remained significant at the group level - as well as within several pa-
tients - the single trials were often poorly discriminated. Consequent-
ly, while the present method may be useful for an overall detection of
consciousness, it is unlikely to be an efficient tool for monitoring of
consciousness at bedside. Some patients however presented relative-
ly high decoding accuracies (up to 83.1% in the local classification and
up to 76.5% in the global classification) and could thus be potential
subjects for these types of online paradigms.

Alternative ways of investigating consciousness, which bypass en-
tirely the need to attend to external stimuli, are also being developed.
For instance, Massimini and collaborators have developed a TMS-EEG
apparatus that tests the complexity and the functional connectivity of
brain responses to TMS pulses. The results demonstrate that this arti-
ficial probe differentiates well the states of consciousness in sleep
(Massimini et al., 2010), anesthesia (Ferrarelli et al., 2010) and DOC
patients (Rosanova et al., 2012). Our own research, again using only
high-density EEG, also suggests that the intrinsic complexity of the
EEG and, especially, the amount of information shared across distant
electrode sites, provides an index that usefully complements the
present approach. Ultimately, a combination of simple experimental
paradigms with sophisticated signal post-processing, as attempted
here, may prove crucial for the automatic detection of conscious pro-
cessing in non-communicating subjects.
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